Intercomp Ltd.

AnalyzelT"

Automated Analysis of Legacy Applications

White Paper

October 1999

Copyright © 1999 by Intercomp Ltd.

Copyright © 1999 by Intercomp Ltd.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, translated, transcribed, or transmitted in any form or by any means, without the
prior written permission of Intercomp Ltd.

AnalyzelT, MinelT, MigratelT, eMaker, and the Intercomp logo are trademarks of
Intercomp Ltd. All other product names or brand names are trademarks or registered
trademarks of their respective owners.

Intercomp Ltd.

6 Maskit Street

Herzliya 46733
Israel

Tel: +972-9-9526777
Fax: +972-9-9526170
E-mail: info@cobol2java.com
Web Site: www.cobol2java.com

November 30, 1999

Contents

About Intercomp Ltd. iv
1. Legacy System Challenge 1
B (T o o] o] 1< SO 1
Analysis Tools vS. Y2K TOOIS ...ooouiiiiiiiiiieiee et 1
2. AnalyzelT Solution 3
Compiler-Centric APPrOACHcvvvcviecieciieeee e e e re st e s s e raesseesssearseerseenseersnessnessnessnenns 3
LeXi0al ANALYSIS ...veetiiiiiieie ettt ettt ettt b e bbbt ettt s 3
SYNTACTIC ANALYSIS 1.vriivieiieiieerieerieeritesirersrerereesreesreeseeeseerseeseaeseaessaessnesssessseesseesssesssesnseesseessasssnessaenns 4
SEMANTIC ANALYSIS c.eeeueeiiieiieet ettt ettt st b e bt e bt st e eateeteesteesaeesane e 4
Benefits of the Compiler-Centric APProachc.oevveiiivinieirieirieerieeriressresreereesreesseesseessseeseesees 5
3. AnalyzeIT Process 7
Collecting and Analyzing the INfOrmationcccoceiriiiiiiiiiiiiiiie e 7
Presenting the INfOrmMationccccvvviveriiriiriieciecier s e e e e e aesresaressreessaesseesssesnsesnseensees 9
4. Advantages of Using Intercomp’s AnalyzelT 13

Copyright © 1999 by Intercomp Ltd. iii

About Intercomp Ltd.

Intercomp Ltd. is a subsidiary of Crystal Systems Solutions (NASDAQ: “CRYS”) and a Formula
Group company (NASDAQ: “FORTY™).

Intercomp’s line of products is based on a set of compiler-centric software tools that provide a
comprehensive automated solution for the migration of legacy mainframe and non-mainframe
COBOL applications to Java N-tier client/server e-commerce applications.

The set of products, certified by Sun Microsystems as “100% Pure Java,” offers its users the
ability to analyze their legacy systems, reengineer and convert them into a new N-tier paradigm.

About Crystal Systems Solutions Ltd.

Crystal Systems Solutions Ltd., and its subsidiaries, provide Fortune 500 companies, and others,
with assessments, conversion methodology, software and professional services for all their
mainframe and non-mainframe based activities with minimum investment in manpower,
resources, and time.

Partial Customer List: FORD Motor Co., Kraft Foods, Farmer Insurance Group, KeyCorp, MCI,
BMW, MetLife, United Technologies Pratt & Whitney, Blue Cross / Blue Shield, Phillips
Petroleum, Ralston Purina, Alex Laurie Factors (UK), Reynolds Metal, Medical Mutual of Ohio,
El Al Israel Airlines, Bank HaMizrahi, Bezeq (Israeli PTT), Bank Leumi—Israel

Crystal Systems Solutions works both independently, and in conjunction with local business
partners worldwide who provide project management and system integration activities in
conjunction with its products. The list of business partners includes Ernst & Young LLP, Logica
Ltd., EDS, SAIC, CGI Informatik GmbH and others.

About the Formula Group

Formula Systems Ltd. (1985) is an information technologies company principally engaged,
through its subsidiaries and affiliates, in the development and marketing of proprietary software
products and in providing information systems solutions. Formula Systems has a number of
subsidiaries which are traded on the Tel-Aviv Stock Exchange (TASE), as well as subsidiaries
which are traded on NASDAQ. Additionally, Formula Systems itself is traded on the TASE and
has ADR’s listed on NASDAQ. Between 1994 and 1998 Formula Systems’ revenues grew to
over $250 million making Formula Systems the largest publicly-traded software group in Israel.
Formula Systems currently employs a staff of over 3,500 employees of which more than 3,000
are computer experts.

Strategic Partnerships of the Formula Group: Formula Systems has developed partnerships
with leading players in a broad range of ficlds. Formula Systems’ strategic partners include,
among others, BAAN Company, Cincinnati Bell information Systems Inc., Cooper Industries
Inc., Ernst & Young LLP and Informix Software Inc.

Key Customers of the Formula Group: ABB, Amdocs, AT&T, Bell Atlantic, Bezeq, Coca-
Cola, Comverse, Deutsche Telekom, Dow Chemical, ECI Telecom, Elect. de FranceEskom,
FAA, Ford GEC Alsthom, Informix, Israel Electric Corp., Israel Air- Force, Keycorp, Krupp
Kraft, Scitex, Telecom Asia, Telstra, Tivoli, Wharf Cable.

iv

Copyright © 1999 by Intercomp Ltd.

1. Legacy System Challenge

The Problem

Effective management of the complex legacy system environment is a challenge, given the norms
of employee turnover rates. Decisions about modernizing these systems, controlling their
performance, and handling changes and enhancements are tough to make without thorough
acquaintance with the underpinnings of the legacy code.

IT managers are concerned today with giving their organization the capacity for faster reaction to
changing market conditions and competition, for easier access to information and data, and for
lower cost of business processes and I'T development. These concerns touch two major aspects of
the IT world: its maintenance on the one hand, and it renovation on the other hand.

Understanding the applications and the systems that exist in the organization, making decisions
based on information and knowledge, and simplifying the tasks of maintenance and development
would enhance an organization’s competitive ability.

Analysis Tools vs. Y2K Tools

Most organizations are well acquainted by now with the inventory, search and replace
capabilities of the Y2K tools they have been using for solving this problem. An important
question is whether or not these tools are able to perform tasks that are needed for the daily
maintenance of such applications and for their reengineering for the purpose of renovation and
modernization.

When developing a product, engineering is usually done in the best and shortest method to get
the product “out the door.” Once the basic needs are met by the product, incremental engineering
is a luxury most organizations can not afford. The capabilities that are needed for handling the
Y2K problem were the ability to find all the sources of the application, then search the
application for date specific fields, and then change the dates to be Y2K compliant. Using tools
with greater capabilities would have been “overkill” concerning these objectives.

Nevertheless, in the post-Y2K world reengineering of the mainframe environment is one of the
issues that must be considered. In some cases the organization will need to renovate the data
model, in some cases it is the user interface, in some cases it is the platform technology base, and
in some cases new application functionality needs to be added. In assessing a code base, IT
departments often do not fully understand the functionality of legacy systems. A tool is required
to analyze and document this functionality, and to describe to users the exact structure and
complexity of mission-critical systems. By having a picture of the application, it is possible to
“see” the code in a new and clearer way. To be able to trace the code graphically and be able to
look directly at the sources of that code and trace its flow can be an important capability for
design, development and QA departments.

Copyright © 1999 by Intercomp Ltd. Page 1

1. Legacy System Challenge Analyzel T White Paper

Page 2 Copyright © 1999 by Intercomp Ltd.

2. AnalyzelT Solution

Intercomp’s AnalyzelT assesses legacy applications, creates a repository and inventory of the
applications’ components, and establishes the relationships between them. The tool collects the
legacy information into the inventory, analyzes it and stores the results in a repository, and
presents it in a user-friendly way with various graphs and reports.

The AnalyzelT process can assist everyday legacy maintenance, precede a process of legacy
migration, component mining, or even rewriting the legacy application, since it supports the
decision making process by providing understanding of the legacy system.

Compiler-Centric Approach

The capabilities of AnalyzelT to collect and extract information about an application, to
examine it carefully, and to present it in a coherent manner, are based on an engine which is
essentially a “smart compiler.” This compiler-centric approach gives AnalyzelT an automated
capability to analyze and understand an entire system along with all of its components.

The kernel of the AnalyzelT product is a large multi-phase compiler package that supports a
wide range of COBOL dialects including embedded software packages such as CICS (Customer
Information Control System), SQL (Structured Query Language), DDL (Data Definition
Language), BMS (Bitmap Screens), etc.

The basic translation scheme is syntax directed and uses mapping techniques in order to achieve
maximum clarity and efficiency in the resulting Java source code.

The compiler builds large data structures that semantically describe the application. This
description can be saved as an IDE (Integrated Development Environment) file, which enables
the user to refine or change the description and perform the translation at a later time.

There are multiple information-collecting phases that take place during compilation: lexical,
syntactic and semantic. The final phase performs the actual translation of the application into
Java using the results of the previous phases. The original source code is significantly improved
by means of the translation schemes used by the translator in conjunction with the information
collected.

Lexical Analysis

The input source code file is lexically analyzed. The lexical analyzer partitions the input stream
into character strings by matching them with a set of predefined regular expressions. The
constructed linked token sequence provides a list of terms that is based on the source file. In
addition, each token object contains the exact location of its string; the complete token sequence
is used as a base leaf sequence for the parsing tree.

The set of predefined regular expressions is large enough to match a wide range of COBOL
terms from different versions of the language including special forms of embedded statements,
such as CICS, SQL, etc.

The lexical analyzer does not impose strike rules on the source program format, and relates to it
as a virtual space with strings to be matched. However, it does recognize and handle the various
areas (sequential number, area A and B, etc.).

Copyright © 1999 by Intercomp Ltd. Page 3

2. AnalyzelT Solution Analyzel T White Paper

Together with the symbol table, the lexical analyzer splits the terms from the input program into
syntactic categories. Special internal terms such as white space and comments are also linked
into the token sequence but are not passed to the syntactic analysis phase.

At the end of the process this sequence is actually a map of the source code file in the main
memory. This sequence is used as the basis for most of the operations that will process this file.

Syntactic Analysis

The purpose of this unit is to build a parse tree of the source code file based on the selected token
provided by the lexical analyzer.

The syntactic analysis is conducted by a large set of context free grammars. This collection of
grammars is designed to catch a wide range of COBOL versions, COBOL dialects and embedded
statements from other supplementary packages such as CICS, SQL, etc.

The parse tree nodes are designed using a special strategy that expresses grammatical
equivalence and reduces and simplifies the semantic analysis and therefore the translation
process and results.

The parse tree is fully object oriented and implements smart inheritance relations between its
nodes. The main principle of the strategy is to design the inheritance relation in such a way that
properties with major semantics will be at the bases of the inheritance structures, while nodes
that add minor semantics will be derived from these bases. This strategy also helps to split the
different parts of the code between different nodes thus helping to build good structured
software, where each node is an object that knows its own semantics.

As in the previous phase, this phase also creates a data structure, i.e., a parse tree for later use.
Splitting the code into different objects simplifies the translation scheme and improves code
readability and reusability.

Semantic Analysis

Semantics analysis captures the semantics of the different object structures, the meaning of their
position in the source code file and the way they relate to each other. An additional purpose is to
understand the ideas that hide behind the code. These ideas are expressed by the parse tree and
the token sequence.

Understanding the programming techniques that were used by the original COBOL programmers
and implemented in the code can help later in the translation phase by producing much more
readable and efficient Java code.

Page 4 Copyright © 1999 by Intercomp Ltd.

Analyzel T White Paper 2. AnalyzelT Solution

Benefits of the Compiler-Centric Approach

There are three main reasons why it is useful for the compiler to understand the programming
techniques that were used in the source program:

To facilitate the change in the software architecture. Legacy COBOL source programs were
programmed using concepts of structured procedural programming style while Java source
code is based upon object-oriented programming and event-driven programming style.

To retain the ideas behind the code. This information helps in generating new code that
keeps these ideas and by doing so makes it easier for the programmers to understand the
differences between the old and the new parts of code. In addition it helps them to find their
way through the many newly generated lines and modules.

To improve the methods used by the original programmers. Not all programs were written
clearly and efficiently. Furthermore, during years of maintenance, COBOL code frequently
becomes a patchwork of fixes and original written in different styles. However, grouping the
knowledge of programming techniques in sophisticated software can help to transform
inconsistent techniques into consistent and efficient ones.

Copyright © 1999 by Intercomp Ltd. Page 5

2. AnalyzelT Solution Analyzel T White Paper

Page 6 Copyright © 1999 by Intercomp Ltd.

3. AnalyzelT Process

Programs

Copybooks Repository

Transactions
AnalyzelT

Figure 1. AnalyzelT Process Flow

Collecting and Analyzing the Information

The collection of information for an application or an entire environment comprises three major
steps that are performed by AnalyzelT:

Inventory

The first step of the AnalyzelT process is to collect an inventory of all components in an
application, and to perform an inspection of the application’s integrity.

For example, a typical COBOL application is composed of:
COBOL programs,
Screen definitions (such as BMS or MFS),

Copybooks,

File or table definitions,

Batch scripts (such as JCL), and

Other items depending on the environment of the application (for example FCT and PCT
tables for CICS applications).

AnalyzelT assesses the application components and lists them in the inventory tables. Moreover,
AnalyzelT determines if application entities are needed but are missing, such as a called
program, a displayed screen, or an accessed file or table definition. By using the built-in reports
provided by AnalyzelT, the user is able to determine what is missing and from where it is
referenced.

Copyright © 1999 by Intercomp Ltd. Page 7

3. AnalyzelT Process Analyzel T White Paper

Analysis

The second step in the AnalyzelT process is to parse the application’s components and to verify
that they are syntactically and semantically correct. Each of the entities is put through a
compilation process; code fragments that are rejected from this process are displayed on the
screen or in a report. These code fragments may originate, for example, from proprietary
software components developed in-house by the customer. To manage these rejections,
AnalyzelT uses the “Decisions and Rules Mechanism” to control the AnalyzelT behavior. Once
the parsing and analysis are over, the tool prepares a final repository of the application.

Repository

After all of the entities are examined and verified, a repository is generated using a standard
database (such as Oracle, Access, etc.), containing all of the information extracted from the
application. The repository contains information about the application’s components, the
relationships between these components, abstracted semantic information about each program’s
behavior, the usage of data items inside programs, control flow and more. The information in the
repository can be accessed using AnalyzelT, or simply using any reporting tool that can access a
standard relational database. The following screen is an example of a repository stored in an
Access database, including the interrelationships between the tables:

@, Microsolt Access - [Relationships] [_[5]
Eﬂﬂ\e Edit Wiew Relationships Tools ‘window Help == 5[‘
D d|&E 5B e W &S e e)]

o
LogiclD

jarne
LogicalName
TypeCode
Feserve

£

iequential
andorn
ynamic

O - Number
/ Operation

External
fGlobal
MinBlocksize
laxBlockSize
linRecordSize
laxRecordSize
|- abelstandard
| abelOmmited
| abelDatalame
Footing
LinesakTop
LinesAtBottom
Recardingtode
I-odeSet
Passwword
Fecordiey
RelativeKey
Frermissions

Typeld
ileType

peration

/ Ees(nptmn

Ready S

Figure 2. AnalyzelT Repository (Access)

Page 8 Copyright © 1999 by Intercomp Ltd.

Analyzel T White Paper 3. AnalyzelT Process

Presenting the Information

In order to perform an analysis of the application, the AnalyzelT tool offers several options:

Graphs

There are several graphs generated from the repository of the application:

o (Cross application flow — This graph shows the flow between different programs in the
application. Programs and screens are nodes in the graph, while links between programs and
screens are the edges. Edges can be the following statements: CICS LINK, CICS XCTL,
CICS RETURN, COBOL CALL, CICS RECEIVE MAP, CICS SEND MAP, etc.

&3 JMaker Graph WE =
H File Edit ‘Workspace Wiew Build JavaProject Graph Window Help =& x|
EE IR R
¢ e QL]
[ET WarkSpace NenHDS" ?
&7 NewHDS Program |

-{3 Cobal
®-3 Copy
-3 BMS
-3 Java
-3 Configuration

|
Transaction [
BMS Map |

]
et
Link

Retum
Use Map

=EH

{w Storage | s Files | sfs Tables
Copy | (2 Cobol i
Welcome To JavaMaker...

]

For Help, press F1

Figure 3. Cross-Application Flow Graph

o Inner program flow — This graph shows the flow inside a program. The nodes of the graphs
are paragraphs, as well as programs, screens, tables and files. The edges can be any statement
that changes the flow between the paragraphs, such as GOTO and PERFORM, as well as the
statements that transfers the flow to external programs such as LINK, RETURN, CALL and
so on. The graph also shows where screens, tables, and files are used in the program.

Copyright © 1999 by Intercomp Ltd. Page 9

3. AnalyzelT Process Analyzel T White Paper

@3 JMaker Graph [_[a]x]
- File Edit ‘Workspace View Buid JavaProject Graph Window Help =12 x|
B = - M R AL 2|
QL
-
=1} WorkSpace MewHD5' —{ Program -
=£Z NewHDS .
421 Cobol Transaction -
4] Copy
4] Java Exit
4.7 Configuration
BMS Map
Fall Through .
Perfarm []
Conditional Perfarm []
Gto _—
Conditional Gota |
h call]
Hell
Link]
Fieturn
Use Map
& Workspace | O] Classes | B BMS
o5 Storage | st Files | b Tables —
Copy J (& Cobol =l

Eelcnme To JavaMaker...

ful

oty Translate |75 Data Modeling

For Help, press F1

Figure 4. Inner-Program Flow Graph

Data flow — This graph shows the way specific data is passed inside a program or between
programs.

Resource graph — This graph shows the usage of resources for each program. Typical
resources are files, tables, screens, copybooks, temporary storage of CICS and so on.
Information about the resource is extracted from the programs and from JCL, CICS tables
and so on.

Reports

The analysis reports are separated into four categories:

Usage reports — These reports specify usage details for each item. An example is a report
listing all statements in which a specific variable is used, or all programs (including specific
lines inside the program) in which a screen or a file is used, and so on.

Resource reports — Similar to the resource graph, these reports list all of the resources of a
program, a group of programs or even specific paragraphs.

Statistics reports — These reports provide statistical information such as how many lines exist
in the whole application, how many times a specific screen is used in the application, which
file is the most used, which program has the most I/O statements, what is the ratio between
I/0 and logic in a specific program and so on.

Dynamic reports — These reports are user-defined reports that can include any of the
information found in the above three categories of reports. They provide the flexibility to
focus on specific information according to the user’s needs.

Page 10 Copyright © 1999 by Intercomp Ltd.

Analyzel T White Paper

Tree Views

Tree views are used to display the following information:

Relationships — Shows which program uses a specific copybook, which copybooks are used
by a specific program, which variables are used in a program and so on.

Tree to source — Enables the user to move from the tree view to the source and back,
depending on the information. When browsing variable information, you can move to the
declaration part of the variable, or to sentences that use it and so on.

Fle Edt ‘Workspace Miew Buld Java Projsct Window Help R

OSEE oW bl o R |
T W ACCTOUS = EXEC CICS SEND HAP() 03970000]
s ¥ ACCTEUSD FREEKE ERASE END-EXEC. 04010000
- ACCTERRI EXEC CICS RETURN TRANSID() 04050000
4 ¥ ACCTERRD COMMAREAL (COMMAREA-FOR-OP] LENGTH(3] EMD-EXEC. 04020000
) W ACCTMNUI N DaLznon0
- W ACCTMNLD - SALiooo0
o W ACCTRANI C ©
- W ACCTRAND
- W COMMAREA-FOR-A1
- W COMMAREA-FORO
- W INREC
v REQC
- W REQNUM
v RESPONSE
§ CICS_ERRORAS
g T CICS-ERRORS .
§ MENU_RESEND N pas1noun
§ SET_CAPTION " paesnou0
§ START aconT HOVE TO ERR-HESSAGE. 04630000
§ START LT EXEC CICS LINK PROGRAM() 04730000
§ START_TRAN COMMAREX (COMMAREA-FOR-ACCTOS) LENGTH(68) END-EZEC. 04770000
] accTafo - 04510000
€] ACCTEUS 04850000
] ACCTERR — SET-CAPTION. 04820000
€] ACCTHAL - 04930000
€] ACCTRAN - 04970000
B ACcTaco - SET THE CAPTICN OF TEE SCREEN. 05010000
B AccTois = - 05050000
. LIJ IF ADD-CUSTOMER 05020000
HOVE TO TITLEO OF ACCTCUSO 05130000
0 Comy (3 Cobol ELSE IF UPD-CUSTOMER 05170000
4 Workspace | Qf Classes | B BMS HMOVE TO TITLEO OF ACCTCUSO 05210000
sl Storage | s Files | sl Tables | ELSE IF QRY-CUSTOMER 05250000
HOVE TO TITLEO OF ACCTCUSO 05220000
FLEFE TF DEL-CTSTOMER Ns3300nn ﬂ

Eelcume To JavaMaker... ﬁ

& Translate [Data Modsling

For Help, press F1

Figure 5. Tree Views
Paragraphs — Shows the tree view of a paragraph and includes information about the
variables used in the paragraphs; the same for screens, files, and tables, etc.

Resources — For each resource the tree view displays information about relationships
between the source and the application (declaration and usage).

Data elements — For each data element, the tree view displays declaration and usage
information. In addition, its hierarchical position relative to other data elements is shown.

Copyright © 1999 by Intercomp Ltd.

3. AnalyzelT Process

Page 11

3. AnalyzelT Process Analyzel T White Paper

Code Analysis
AnalyzelT offers several optimizations that can be performed on the application:

e Pattern matching — Enables you to try and match a specific programming sequence to similar
patterns found in the application. This process is useful when trying to find duplicate code
parts that can be joined.

&5 IMaker Acct4 [_[&]x]
RS

. Fle Edt ‘Workspace iew Buld JavaProjsct Window Help

EN=2 =N A - e

=
[T o pace Nenklo5 el [| [Seoen
E“E;-D“I;nhnl EXEC SQL ROLLEACK WORK RELEASE . ACEOLNT -
€ Acotl HOVE ' UNENMOWN SQL EREOR' TO ERR-HESSAGE. __fpiors |
Moot EXEC CICS XOTL PROGREM [ACCTOS!')
Aoot? COMMAREL [COMMAREA-FOR-ACCTOS) LENGTH(38) Llear Contents
Acctld
Acctld ¥ Al Files Adwanced >5>
I feotts CHECK-DEPOSIT-PAR. =
-EAncthtch [oy
- Copy amplesi\NewHDS \NewHDS\Cobolbac. g
- BMS amplesiNewHD S \NewHD SYCopyibe... g
0 Jave amples\NewHD S\ NewHD S\ Copybe 1 J
) MOVE BANK-NUH amples\MewHDS NenHDS\BMS s 1
-0 Configwaiion e amplesiNenHDS NewHDSBMS Ae . 1
HOVE ACCOUNT-HUN SN _Iﬂ
HOVE ANMOUNTI [« v
MOVE CASE-DEPOSIT-CODE — TO TRANSTYPE
HOVE 0 TO CHECENO.

G0 TO WRITE-TRANS-PAE.

UITHDRAWAL-PAR.

HNOVE BANE-INUIM TO BANKE
HNOVE BRANCH-NUHN TO ERANCH
HMOVE ACCOUNT-NUH TO ACCOUNT
I % Workspace | Q) Clasees | e MOVE AMOUNTI TO AMOUNT
s Storage $ Filss W HNOWE WITHDRAWAL-CODE TO TRANSTYPE
MOUE N T CHECENO . -
Copy | (G Cobol 4 _’l_l

Welcome To JavaMaker...

1]
2y Tianslale [ik DataModsling

For Help, press F1

Figure 6. Pattern Matching Code Analysis

o Redundant analysis — Enables you to find redundant parts in the application. Redundant code
can include variables declared but not used, paragraphs that are not reached, files or tables
that are declared but not used and so on.

Page 12 Copyright © 1999 by Intercomp Ltd.

Analyzel T White Paper 4. Advantages of Using Intercomp’s Analyzel T

4. Advantages of Using Intercomp’s AnalyzelT

The first and most direct result of the AnalyzelT process is the ability to “view” an entire system
graphically and systematically. As previously described, this overall view is given by means of
graphical presentation and reporting methods. This combination provides the users of AnalyzelT
increased control over their systems: they are now able to point out missing components of the
system, to locate unused or unreferenced code segments, to produce quantity reports of various
system components, etc.

Change management has always been a difficult issue for IT maintenance. The control
AnalyzelT provides over the system’s internals, makes changes and enhancements to a system
an easier and simpler process to manage. Working on the basis of accurate information about the
system’s components is now an integral part of decision making.

Another major benefit of the Analyzel T process is the asset of the inventory and the repository
that are created as a result of the process. Such documentation of a system, which is centralized
in one standard database, contains the organizational body of knowledge. It can be used as the
core and the “gate-keeper” for maintenance of the applications and for their future development.

The benefits of AnalyzelT also apply to the redesign and reengineering of existing systems.
These aspects of development work are easier and faster if they rely upon an accurate view of the
current system structure.

Copyright © 1999 by Intercomp Ltd. Page 13

Intercomp Ltd.

6 Maskit Street
Herzliya 46733
Israel

Tel: +972-9-9526777
Fax: +972-9-9526170
E-mail: info@cobol2java.com
Web Site: www.cobol2java.com

j’

Q. A Subsidiary of
))) Crystal

Systems Solutions Ltd.

7\
C)

A Formula
Group
Company

